Respuesta :
Create line segment BM so that it is perpendicular to AC (creating a 90° angle). Now you have created ΔAMB which is a 30°-60°-90° triangle and ΔCMB which is a 45°-45°-90° triangle.
ΔAMB
hypotenuse: AB = 12 (given) = 2x ⇒ x = 6
60°: BM = x√3 ⇒ BM = 6√3
30°: AM = x ⇒ AM = 6
ΔCMB
45°: BM = 6√3 (solved from ΔAMB) = x
45°: MC = x ⇒ MC = 6√3
hypotenuse: BC = x√2 ⇒ BC = 6√6
Perimeter (P)
P = AB + BC + AC (AC = AM + MC per segment addition postulate)
P = 12 + 6√6 + 6 + 6√3
P = 18 + 6√6 + 6√3
Answer:
Perimeter ≈ 44.78 units
Step-by-step explanation:
In ΔABC first draw a median on line AB from vertex A and name that point as M . Now in ΔAMB,
[tex]\sin 30 =\frac{perpendicular}{hypotenuse}\\ \sin 30=\frac{AM}{AB}\\\frac{1}{2}=\frac{AM}{12}\\AM=6[/tex]
Now, By Pythagoras Theorem in ΔAMB ,
[tex]AB^{2}=AM^{2}+ MB^{2}\\144=36+MB^{2}\\MB=6\sqrt{3}[/tex]
As median divides the line segment in two equal parts so BC =
[tex]2\cdot MB[/tex]
BC = 12√3
Now in ΔAMC,
[tex]\sin 30 =\frac{perpendicular}{hypotenuse}\\ \sin 30=\frac{AM}{CA}\\\frac{1}{2}=\frac{6}{CA}\\CA=12[/tex]
So, perimeter = AB+BC+CA
= 12+12+12√3 = 44.78