You are given the function [tex]m(x) = 4x^3 - 5x^2 - 7x.[/tex]
1. Find the derivative m'(x):
[tex]m'(x)=4\cdot 3x^2-5\cdot 2x-7=12x^2-10x-7.[/tex]
2. Find stationary points, solving the equation m'(x)=0:
[tex]12x^2-10x-7=0,\\ \\D=(-10)^2-4\cdot 12\cdot (-7)=100+336=436,\\ \\\sqrt{D}=\sqrt{436}=2\sqrt{109},\\ \\x_1=\dfrac{10-2\sqrt{109}}{24}=\dfrac{5-\sqrt{109}}{12},\ x_2=\dfrac{10+2\sqrt{109}}{24}=\dfrac{5+\sqrt{109}}{12}.[/tex]
3. Determine the signs of derivative:
Thus, function is decreasing for [tex]x\in \left(\dfrac{5-\sqrt{109}}{12}, \dfrac{5+\sqrt{109}}{12}\right)\approx (-0.45,1.29).[/tex]