Respuesta :
The reaction is 2 NO (g) <----> N2(g) + O2
partial pressures
Initial 37.30 0 0
Change -2p +p +p
Equilibrium 37.30-p p p
Kp = pN2 X pO2 / (pNO)^2
2400 = p^2 / (37.30-p)^2
3339096 - 179040p + 2400p^2 = p^2
2399p^2 + 3339096 -179040 p = 0
On solving
p = 36.55atm
Thus partial pressure of N2 and O2 = 36. 55 atm
Answer:
[tex]p_{N_2}^{eq}=p_{O_2}^{eq}}=18.27atm[/tex]
Explanation:
Hello,
In this case, for the given chemical reaction, the law of mass action turns out:
[tex]Kp=\frac{p_{N_2}^{eq}p_{O_2}^{eq}}{(p_{NO}^{eq})^2}[/tex]
Whereas the equilibrium pressures, based on the stoichiometry and the change [tex]x[/tex], changes to:
[tex]Kp=\frac{(x)(x)}{(37.30-2x)^2}=2400[/tex]
Solving for [tex]x[/tex] via quadratic equation, one obtains:
[tex]x_1=18.27atm\\x_2=18.84atm[/tex]
In such a way, the feasible solution is 18.27 atm since the other pressure lead to a negative pressure of NO at the equilibrium, therefore, the equilibrium pressures of nitrogen and oxygen that are equal, result in:
[tex]p_{N_2}^{eq}=p_{O_2}^{eq}}=x_1=18.27atm[/tex]
Best regards.