Solve x2 − 12x + 5 = 0 using the completing-the-square method. x = six plus or minus the square root of five x = negative six plus or minus the square root of five x = six plus or minus the square root of thirty one x = negative six plus or minus the square root of thirty one

Respuesta :

we are given

[tex]x^2-12x+5=0[/tex]

we have to solve it by completing square method

step-1: Move 5 on right side

[tex]x^2-12x+5-5=0-5[/tex]

[tex]x^2-12x=-5[/tex]

step-2: Break middle term

[tex]x^2-2*6*x=-5[/tex]

step-3: Add 6^2 both sides

[tex]x^2-2*6*x+(6)^2=-5+(6)^2[/tex]

[tex](x-6)^2=31[/tex]

step-3: Solve for x

[tex]\sqrt{(x-6)^2} =\sqrt{31}[/tex]

we wil get two values

First value is

[tex]x-6=\sqrt{31}[/tex]

add both sides 6

[tex]x-6+6=6+\sqrt{31}[/tex]

[tex]x=6+\sqrt{31}[/tex]

Second value is

[tex]x-6=-\sqrt{31}[/tex]

add both sides 6

[tex]x-6+6=6-\sqrt{31}[/tex]

[tex]x=6-\sqrt{31}[/tex]

so, solutions are

[tex]x=6+\sqrt{31}[/tex]

[tex]x=6-\sqrt{31}[/tex].............Answer

Answer:

x=6sqrt31

Step-by-step explanation:

guy above is correct