If f(x) = |x| + 9 and g(x) = –6, which describes the value of (f + g)(x)?


(f + g)(x) 3 for all values of x(f + g)(x) 3 for all values of x(f + g)(x) 6 for all values of x(f + g)(x) 6 for all values of x

Respuesta :

f(x) = |x| + 9

g(x) = -6

(f + g)(x) = |x| + 9 + -6

            = |x| + 3

I don't understand the second question. Do you mean (f + g)(3) and (f + g)(6)? Can you please type it in the comments?  

Answer:

[tex](f+g)(x)\geq 3[/tex] for all values.

Step-by-step explanation:

Given : [tex]f(x)=|x|+9[/tex] and [tex]g(x)=-6[/tex]

To find : The description of [tex](f+g)(x)[/tex]  

Solution :

We have given,

[tex]f(x)=|x|+9[/tex] and [tex]g(x)=-6[/tex]

Using property,              

[tex](f+g)(x)=f(x)+g(x)[/tex]  

Substituting the values,

[tex](f+g)(x)=|x|+9+(-6)[/tex]          

[tex](f+g)(x)=|x|+9-6[/tex]

[tex](f+g)(x)=|x|+3[/tex]      

If we put any value of x in to this function,

We get a value that is greater than or equal to 3.

Refer the attached figure below.  

Ver imagen tardymanchester