Respuesta :

If we assume you mean (x-3)(x+6)/(x+7), the expression is zero when the numerator factors are zero: at x=3 and x=-6.

Appropriate choices are ...

  • D. -6
  • F. 3

Answer: D.-6 and F.3

Step-by-step explanation:

The given rational number : [tex]\dfrac{(x-3)(x+6)}{(x+7)}[/tex]

To find : The value of x  , where the  rational expression becomes equal zero.

Let's check all the options :

A. 7

At x= 7  , [tex]\dfrac{(7-3)(7+6)}{(7+7)}=\dfrac{26}{7}\neq0[/tex]

B. -7

At x= 7 ,  [tex]\dfrac{(-7-3)(-7+6)}{(-7+7)}=\dfrac{10}{0}=\infty\neq0[/tex]

C. 6

At x= 6 ,  [tex]\dfrac{(6-3)(6+6)}{(6+7)}=\dfrac{36}{13}\neq0[/tex]

D. -6

At x= -6 , [tex]\dfrac{(-6-3)(-6+6)}{(-6+7)}=\dfrac{0}{1}=0[/tex]

E. -3

At x= -3 ,   [tex]\dfrac{(-3-3)(-3+6)}{(-3+7)}=\dfrac{-9}{2}\neq0[/tex]

F. 3

At x= 3 , [tex]\dfrac{(3-3)(3+6)}{(3+7)}=0[/tex]

Thus, at x= -6 and 3 , the rational expression equals to zero .

So , the correct options are : D.-6 and F.3