Respuesta :
[tex]\text{Use distributive property:}\\a(b + c) = ab + ac\\\\and\ a^n\cdot a^m=a^{n+m}[/tex]
[tex]-a^2b^2c^2(a+b-c)=(-a^2b^2c^2)(a)+(-a^2b^2c^2)(b)+(-a^2b^2c^2)(-c)\\\\=-a^3b^2c^2-a^2b^3c^2+a^2b^2c^3[/tex]
Answer: The required product is [tex]-a^3b^2c^2-a^2b^3c^2+a^2b^2c^3.[/tex]
Step-by-step explanation: We are given to find the following product :
[tex]P=-a^2b^2c^2(a+b-c)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]
To find the given product, we must multiply the first common term to each term within the bracket.
The evaluation of the product (i) is as follows :
[tex]P\\\\=-a^2b^2c^2(a+b-c)\\\\=-a^2b^2c^2\times a-a^2b^2c^2\times b+a^2b^2c^2\times c\\\\=-a^3b^2c^2-a^2b^3c^2+a^2b^2c^3.[/tex]
Thus, the required product is [tex]-a^3b^2c^2-a^2b^3c^2+a^2b^2c^3.[/tex]