Answer:
[tex] x = \dfrac{4}{3} [/tex] or [tex] x = -3 [/tex]
Step-by-step explanation:
3x^2 + 5x - 12
To solve it, you need an equation, so I think you mean this equation.
3x^2 + 5x - 12 = 0
Using the quadratic formula, you have a = 3, b = 5, c = -12.
[tex] x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} [/tex]
[tex] x = \dfrac{-5 \pm \sqrt{5^2 - 4(3)(-12)}}{2(3)} [/tex]
[tex] x = \dfrac{-5 \pm \sqrt{25 + 144}}{6} [/tex]
[tex] x = \dfrac{-5 \pm \sqrt{169}}{6} [/tex]
[tex] x = \dfrac{-5 \pm 13}{6} [/tex]
[tex] x = \dfrac{8}{6} [/tex] or [tex] x = \dfrac{-18}{6} [/tex]
[tex] x = \dfrac{4}{3} [/tex] or [tex] x = -3 [/tex]