ANSWER
[tex]5N^2=3^{2} \times 5^{5} \times x^{6}[/tex]
EXPLANATION
[tex]N=3\times5^2 \times x^3[/tex].
[tex]5N^2=5(3\times5^2 \times x^3)^2[/tex]
Recall this property of exponents;
[tex](a^m)^2=a^{m} \times a^m[/tex]
So our product becomes;
[tex]5N^2=5(3\times5^2 \times x^3) \times (3\times5^2 \times x^3)[/tex]
[tex]5N^2=5\times 3\times 3 \times 5^2 \times 5^2 \times x^3 \times x^3[/tex]
[tex]5N^2=3\times 3\times 5 \times 5^2 \times 5^2 \times x^3 \times x^3[/tex]
Recall this law of exponents:
[tex]a^m \times a^n =a ^{m+n}[/tex]
[tex]5N^2=3^{1+1} \times 5^{1+2+2} \times x^{3+3}[/tex]
[tex]5N^2=3^{2} \times 5^{5} \times x^{6}[/tex]