Respuesta :

first step is to isolate the absolute value by adding 8 to each side

|6x-7| >= 11

now separate into 2 equations a positive and a negative (remembering to flip the inequality symbol for the negative)

6x-7>=11         6x-7<=-11

add 7 to each side

6x>=18       6x<=-4

divide by 6

x>=3           x<=-4/6

-2/3 >= x or 3<=x


Answer:

[tex] x \le -\dfrac{2}{3} [/tex]   or   [tex] x \ge 3 [/tex]

Step-by-step explanation:

[tex] |6x - 7| - 8 \ge 3 [/tex]

[tex] |6x - 7| \ge 11 [/tex]

[tex] 6x - 7 \le -11 [/tex]   or   [tex] 6x - 7 \ge 11 [/tex]

[tex] 6x \le -4 [/tex]   or   [tex] 6x \ge 18 [/tex]

[tex] x \le \dfrac{-4}{6} [/tex]   or   [tex] x \ge \dfrac{18}{6} [/tex]

[tex] x \le -\dfrac{2}{3} [/tex]   or   [tex] x \ge 3 [/tex]