Respuesta :
first step is to isolate the absolute value by adding 8 to each side
|6x-7| >= 11
now separate into 2 equations a positive and a negative (remembering to flip the inequality symbol for the negative)
6x-7>=11 6x-7<=-11
add 7 to each side
6x>=18 6x<=-4
divide by 6
x>=3 x<=-4/6
-2/3 >= x or 3<=x
Answer:
[tex] x \le -\dfrac{2}{3} [/tex] or [tex] x \ge 3 [/tex]
Step-by-step explanation:
[tex] |6x - 7| - 8 \ge 3 [/tex]
[tex] |6x - 7| \ge 11 [/tex]
[tex] 6x - 7 \le -11 [/tex] or [tex] 6x - 7 \ge 11 [/tex]
[tex] 6x \le -4 [/tex] or [tex] 6x \ge 18 [/tex]
[tex] x \le \dfrac{-4}{6} [/tex] or [tex] x \ge \dfrac{18}{6} [/tex]
[tex] x \le -\dfrac{2}{3} [/tex] or [tex] x \ge 3 [/tex]