Respuesta :

Answer:

D is correct. [tex]x^2-2x-4=0[/tex]

Step-by-step explanation:

We are given the root of the equation

[tex]x=1+\pm \sqrt{5}[/tex]

If we are given solution of the equation then find equation using formula.

If a and b are the solution of equation then equation would be (x-a)(x-b)=0

Here, [tex] a=1+\sqrt{5} , b=1-\sqrt{5}[/tex]

Equation form would be [tex] (x-1-\sqrt{5})(x-1+\sqrt{5})=0[/tex]

Now we simplify the above equation to get correct option.

[tex] x^2-x+x\sqrt{5}-x+1-\sqrt{5}-x\sqrt{5}+\sqrt{5}-5=0[/tex]

[tex]x^2-2x-4=0[/tex]

So, D is correct.  [tex]x^2-2x-4=0[/tex]

Answer: D

Step-by-step explanation:

2020edg