Respuesta :

Answer: 10x³

Step-by-step explanation:

n=0                                  1

n=1                                1  2 1

n=2                             1  3  3  1

n=3                           1  4  6  4  1

n=4                         1  5 10 10 5  1

The second term of the expansion is: 5(a)³(b)

= 5(x)³(2)

= 10x³

Pascal triangle contains values as [tex]^nC_r[/tex] ; n being row number, and r is index in row, both 0 indexing. The second term in expansion of [tex](x+2)^4[/tex] is [tex]8x^3[/tex]

What is Pascal triangle?

Pascal triangles contains coefficient of [tex](x+1)^n[/tex] 's expanded form's terms.

For first row, we have:

[tex](x+1)^0 = 1[/tex]

Thus, 1 is the value in the first row of Pascal triangle.

Thus, for second row, we have:

[tex](x+1)^1 = x + 1[/tex]

The variable x has coefficient 1, and that 1 itself, so second row of Pascal triangle has 1 , 1 as values.

For third row, we have:

[tex](x+1)^2 = x^2 + 2x + 1[/tex]

Thus, 1, 2, 1 as values in third row. And so on.

For nth row, and its rth term(all counted from 0-indexing(that means, counting of index starts from 0), then that term in Pascal triangle is [tex]^nC_r[/tex]

                  1

              1     1

            1     2     1

        1      3     3      1

  1        4      6     4       1

1        5      10    10     5       1

.........

The rth indexed term with nth row is termed as [tex]^nC_rx^{n-r}y^r[/tex] for expansion of [tex](x+y)^n[/tex]

For the given condition, we've got  [tex](x+2)^4[/tex]

We have n = 4, and r = 2 - 1 = 1(as second term needed, and second term is 1 indexed in 0 indexing).

Since y = 2, thus, the second term of [tex](x+2)^4[/tex]  is [tex]^4C_1x^32^1 = 8x^3[/tex]

Thus,

The second term in expansion of [tex](x+2)^4[/tex] is [tex]8x^3[/tex]

Learn more about Pascal triangle here:

https://brainly.com/question/26134164