Respuesta :

ANSWER TO QUESTION 1

[tex]\frac{\frac{y^2-4}{x^2-9}} {\frac{y-2}{x+3}}[/tex]

Let us change middle bar to division sign.

[tex]\frac{y^2-4}{x^2-9}\div \frac{y-2}{x+3}[/tex]

We now multiply with the reciprocal of the second fraction

[tex]\frac{y^2-4}{x^2-9}\times \frac{x+3}{y-2}[/tex]

We factor the first fraction using difference of two squares.

[tex]\frac{(y-2)(y+2)}{(x-3)(x+3)}\times \frac{x+3}{y-2}[/tex]

We cancel common factors.

[tex]\frac{(y+2)}{(x-3)}\times \frac{1}{1}[/tex]

This simplifies to

[tex]\frac{(y+2)}{(x-3)}[/tex]

ANSWER TO QUESTION 2

[tex]\frac{1+\frac{1}{x}} {\frac{2}{x+3}-\frac{1}{x+2}}[/tex]

We change the middle bar to the division sign

[tex](1+\frac{1}{x}) \div (\frac{2}{x+3}-\frac{1}{x+2})[/tex]

We collect LCM to obtain

[tex](\frac{x+1}{x})\div \frac{2(x+2)-1(x+3)}{(x+3)(x+2)}[/tex]

We expand and simplify to obtain,

[tex](\frac{x+1}{x})\div \frac{2x+4-x-3}{(x+3)(x+2)}[/tex]

[tex](\frac{x+1}{x})\div \frac{x+1}{(x+3)(x+2)}[/tex]

We now multiply with the reciprocal,

[tex](\frac{(x+1)}{x})\times \frac{(x+2)(x+3)}{(x+1)}[/tex]

We cancel out common factors to  obtain;

[tex](\frac{1}{x})\times \frac{(x+2)(x+3)}{1}[/tex]

This simplifies to;

[tex]\frac{(x+2)(x+3)}{x}[/tex]

ANSWER TO QUESTION 3

[tex]\frac{\frac{a-b}{a+b}} {\frac{a+b}{a-b}}[/tex]

We rewrite the above expression to obtain;

[tex]\frac{a-b}{a+b}\div {\frac{a+b}{a-b}}[/tex]

We now multiply by the reciprocal,

[tex]\frac{a-b}{a+b}\times {\frac{a-b}{a+b}}[/tex]

We multiply out to get,

[tex]\frac{(a-b)^2}{(a+b)^2}[/tex]

ANSWER T0 QUESTION 4

To solve the equation,

[tex]\frac{m}{m+1} +\frac{5}{m-1} =1[/tex]

We multiply through by the LCM of [tex](m+1)(m-1)[/tex]

[tex](m+1)(m-1) \times \frac{m}{m+1} + (m+1)(m-1) \times \frac{5}{m-1} =(m+1)(m-1) \times 1[/tex]

This gives us,

[tex](m-1) \times m + (m+1) \times 5}=(m+1)(m-1)[/tex]

[tex]m^2-m+ 5m+5=m^2-1[/tex]

This simplifies to;

[tex]4m-5=-1[/tex]

[tex]4m=-1-5[/tex]

[tex]4m=-6[/tex]

[tex]\Rightarrow m=-\frac{6}{4}[/tex]

[tex]\Rightarrow m=-\frac{3}{2}[/tex]

ANSWER TO QUESTION 5

[tex]\frac{3}{5x}+ \frac{7}{2x}=1[/tex]

We multiply through with the LCM  of [tex]10x[/tex]

[tex]10x \times \frac{3}{5x}+10x \times \frac{7}{2x}=10x \times1[/tex]

We simplify to get,

[tex]2 \times 3+5 \times 7=10x[/tex]

[tex]6+35=10x[/tex]

[tex]41=10x[/tex]

[tex]x=\frac{41}{10}[/tex]

[tex]x=4\frac{1}{10}[/tex]

Method 1: Simplifying the expression as it is.

[tex]\frac{\frac{3}{4}+\frac{1}{5}}{\frac{5}{8}+\frac{3}{10}}[/tex]

We find the LCM of the fractions in the numerator and those in the denominator separately.

[tex]\frac{\frac{5\times 3+ 4\times 1}{20}}{\frac{(5\times 5+3\times 4)}{40}}[/tex]

We simplify further to get,

[tex]\frac{\frac{15+ 4}{20}}{\frac{25+12}{40}}[/tex]

[tex]\frac{\frac{19}{20}}{\frac{37}{40}}[/tex]

With this method numerator divides(cancels) numerator and denominator divides (cancels) denominator

[tex]\frac{\frac{19}{1}}{\frac{37}{2}}[/tex]

Also, a denominator in the denominator multiplies a numerator in the numerator of the original fraction while a numerator in the denominator multiplies a denominator in the numerator of the original fraction.

That is;

[tex]\frac{19\times 2}{1\times 37}[/tex]

This simplifies to

[tex]\frac{38}{37}[/tex]

Method 2: Changing the middle bar to a normal division sign.

[tex](\frac{3}{4}+\frac{1}{5})\div (\frac{5}{8}+\frac{3}{10})[/tex]

We find the LCM of the fractions in the numerator and those in the denominator separately.

[tex](\frac{5\times 3+ 4\times 1}{20})\div (\frac{(5\times 5+3\times 4)}{40})[/tex]

We simplify further to get,

[tex](\frac{15+ 4}{20})\div (\frac{(25+12)}{40})[/tex]

[tex]\frac{19}{20}\div \frac{(37)}{40}[/tex]

We now multiply by the reciprocal,

[tex]\frac{19}{20}\times \frac{40}{37}[/tex]

[tex]\frac{19}{1}\times \frac{2}{37}[/tex]

[tex]\frac{38}{37}[/tex]