Two Algebra Questions! Help!
1) Divide 8x4 – 6x3 + 7x2 – 11x +10 by 2x – 1 using long division. Show all work. Then explain if 2x – 1 is a factor of the dividend.

2) Factor f(x) = x4 + x3 – 8x2 + 6x + 36 completely. Show all work for finding the factors. Sketch the graph by hand, use the graph below, label at least 6 points on the graph. State the factors and the roots. (Hint: two of your factors will be complex

Respuesta :

ANSWER TO QUESTION 1

Check attachment for long division.


From our long division we can write the following;


[tex]\frac{8x^4-6x^3+7x^2-11x+10}{2x-1} =4x^3-x^2+3x-4+\frac{6}{2x-1}[/tex]


Since the polynomial


[tex]8x^4-6x^3+7x^2-11x+10[/tex] leaves a non zero  remainder of [tex]6[/tex] when divided by [tex]2x-1[/tex], we conclude that [tex]2x-1[/tex] not a factor of the dividend,


ANSWER TO QUESTION 2


We want to factor

[tex]f(x)=x^4+x^3-8x^2+6x+36[/tex]

The possible rational roots are;

[tex]\pm1, \pm 2,\pm 3, \pm 4,\pm 6,\pm 9, \pm18, \pm 36[/tex]


We found


[tex]f(-2)=(-2)^4+(-2)^3-8(-2)^2+6(-2)+36[/tex]


[tex]f(-2)=16+-8-32+-12+36[/tex]

[tex]f(-2)=-36+36[/tex]


[tex]f(-2)=0[/tex]


and


[tex]f(-3)=(-3)^4+(-3)^3-8(-3)^2+6(-3)+36[/tex]


[tex]f(-3)=81-27-72-18+36[/tex]


[tex]f(-3)=-36+36[/tex]


[tex]f(-3)=0[/tex].


This means that [tex](x+2)[/tex] and [tex](x+3)[/tex] are factors of the polynomial.


This also means that

[tex](x+2)(x+3)=x^2+5x+6[/tex] is also a factor of the polynomial


So we apply long division to obtain the remaining factors as shown in the attachment.


[tex]\Rightarrow f(x)=x^4+x^3-8x^2+6x+36=(x+2)(x+3)(x^2-4x+6)[/tex]



We factor further to obtain;

[tex]\Rightarrow f(x)=x^4+x^3-8x^2+6x+36=(x+2)(x+3)(x-(2-\sqrt{2}i))(x-(2+\sqrt{2}i))[/tex]








Ver imagen kudzordzifrancis
Ver imagen kudzordzifrancis