Respuesta :

gmany

The point-slope form:

[tex]y-y_1=m(x-x_1)\\\\m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have the points (-1, 2) and (5, 2). Substitute:

[tex]m=\dfrac{2-2}{5-(-1)}=\dfrac{0}{6}=0\\\\y-2=0(x-(-1))\\\\y-2=0[/tex]

Answer: y - 2 = 0.

Answer:

[tex] y- 2=0[/tex]

Step-by-step explanation:

Given  : A  line passes through points (-1, 2) and (5, 2).

To find : What is the equation of a line.

Solution : We have given points (-1, 2) and (5, 2).

General form of line equation :

[tex]y-y_{1} =(\frac{y_{2}-y_{1}}{x_{2}-x_{1}})(x-x_{1})[/tex].

Here, [tex]y_{1} = 2.\\y_{2} =2\\x_{1} =-1\\x_{2} =5[/tex].

Plug the values

[tex] y- 2 =(\frac{2-2}{5+1})(x+ 1)[/tex].

[tex] y- 2=0[/tex].

Therefore, [tex] y- 2=0[/tex].