Respuesta :
The point-slope form:
[tex]y-y_1=m(x-x_1)\\\\m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have the points (-1, 2) and (5, 2). Substitute:
[tex]m=\dfrac{2-2}{5-(-1)}=\dfrac{0}{6}=0\\\\y-2=0(x-(-1))\\\\y-2=0[/tex]
Answer: y - 2 = 0.
Answer:
[tex] y- 2=0[/tex]
Step-by-step explanation:
Given : A line passes through points (-1, 2) and (5, 2).
To find : What is the equation of a line.
Solution : We have given points (-1, 2) and (5, 2).
General form of line equation :
[tex]y-y_{1} =(\frac{y_{2}-y_{1}}{x_{2}-x_{1}})(x-x_{1})[/tex].
Here, [tex]y_{1} = 2.\\y_{2} =2\\x_{1} =-1\\x_{2} =5[/tex].
Plug the values
[tex] y- 2 =(\frac{2-2}{5+1})(x+ 1)[/tex].
[tex] y- 2=0[/tex].
Therefore, [tex] y- 2=0[/tex].