Respuesta :

8x^3+64y^3

factor out 8

8(x^3+y^3)

this is known as the sum of cubes

8(x + y) (x^2 - x y + y^2)

Answer:

[tex](2x+4y)(4x^2-8xy+16y^2)[/tex]

Step-by-step explanation:

We are asked to factor [tex]8x^3+64y^3[/tex].

We can rewrite 8 as [tex]2^3[/tex] and 64 as [tex]4^3[/tex].

[tex](2x)^3+(4y)^3[/tex]

Using sum of cubes [tex]a^3+b^3=(a+b)(a^2-ab+b^2)[/tex], we will get:

[tex](2x)^3+(4y)^3=(2x+4y)((2x)^2-(2x*4y)+(4y)^2)[/tex]

[tex](2x)^3+(4y)^3=(2x+4y)(4x^2-8xy+16y^2)[/tex]

Therefore, the factored form of our given expression would be [tex](2x+4y)(4x^2-8xy+16y^2)[/tex].