Respuesta :

We are given

[tex]f(x)=e^{x} cosh(x)[/tex]

Since, [tex]e^{x}[/tex] and [tex]cosh(x)[/tex] are multiplied

so, we will use product rule of derivative

[tex]\mathrm{Apply\:the\:Product\:Rule}:\quad \left(f\cdot g\right)'=f\:'\cdot g+f\cdot g'[/tex]

[tex]f'(x)=\frac{d}{dx}\left(e^x\right)\cosh \left(x\right)+\frac{d}{dx}\left(\cosh \left(x\right)\right)e^x[/tex]

we know that

[tex]\frac{d}{dx}\left(e^x\right)=e^x[/tex]

and

[tex]\frac{d}{dx}\left(\cosh \left(x\right)\right)=\sinh \left(x\right)[/tex]

so, we can plug these values

and we get

[tex]f'(x)=e^x\cosh \left(x\right)+\sinh \left(x\right)e^x[/tex]...............Answer