Respuesta :

[tex]Solution,6b+7-2b=1+5b\quad :\quad b=6[/tex]

[tex]Steps:[/tex]

[tex]6b+7-2b=1+5b[/tex]

[tex]\mathrm{Group\:like\:terms}, 6b-2b+7=1+5b[/tex]

[tex]\mathrm{Add\:similar\:elements:}\:6b-2b=4b, 4b+7=1+5b[/tex]

[tex]\mathrm{Subtract\:}7\mathrm{\:from\:both\:sides}, 4b+7-7=1+5b-7[/tex]

[tex]\mathrm{Simplify}, 4b=5b-6[/tex]

[tex]\mathrm{Subtract\:}5b\mathrm{\:from\:both\:sides}, 4b-5b=5b-6-5b[/tex]

[tex]\mathrm{Simplify}, -b=-6[/tex]

[tex]\mathrm{Divide\:both\:sides\:by\:}-1, \frac{-b}{-1}=\frac{-6}{-1}[/tex]

[tex]\mathrm{Simplify}, b=6[/tex]

[tex]\mathrm{The\:Correct\:Answer\:is\:b=6}[/tex]

[tex]\mathrm{Hope\:This\:Helps!!!}[/tex]

[tex]\mathrm{-Austint1414}[/tex]

Answer:

b=6

Step-by-step explanation:

We have the expression [tex]6b+7-2b=1+5b[/tex]

We are to leave in one side of the expression all the terms that has b and in the other the terms that doesn't have b.

[tex]6b+7-2b=1+5b\\6b-2b-5b=1-7[/tex]

We can apply common factor b in the left side, and resolve the subtraction in the right side.

[tex]b(6-2-5)=-6\\b(-1)=-6[/tex]

Now divide both sides in (-1).

[tex]b(-1)=-6\\\frac{b(-1)}{(-1)}=\frac{(-6)}{(-1)} \\b=6[/tex]

Then the answer of [tex]6b+7-2b=1+5b[/tex] is b=6.