The point-slope form:
[tex]y=y_1=m(x-x_1)\\\\(x_1,\ y_1)-point\\m-slope[/tex]
We have
[tex]y-1=7(x-2)[/tex]
Therefore
the point = (2, 1)
the slope = 7
The slope [tex]m=\dfrac{\Delta y}{\Delta x}=7\to\dfrac{\Delta y}{\Delta x}=\dfrac{7}{1}[/tex]
7 units up and 1 unit right.
-------------------------------------------------------------------------------
Other method.
[tex]y-1=7(x-2)\qquad|\text{use distributive property}\\\\y-1=7x-14\qquad|+1\\\\y=7x-13[/tex]
It's the slope-intercept form.
for x = 0 → y = 7(0) - 13 = 0 - 13 = -13 → (0, 13)
for x = 2 → y = 7(2) - 13 = 14 - 13 = 1 → (2, 1)