contestada

Which pair of complex numbers has a real-number product? (1 + 2i)(8i) (1 + 2i)(2 – 5i) (1 + 2i)(1 – 2i) (1 + 2i)(4i)

Respuesta :

Answer:

(1+2i)(1-2i)

Step-by-step explanation:


Answer:

(1+2i)(1-2i)

Step-by-step explanation:

Following are the pairs of the complex number:

(1+2i)(8i),

(1 + 2i)(2 – 5i)

(1+2i)(1-2i) and (1+2i)(4i)

We have to check which pair out of these is a real number product, which means which pair do not contain terms consisting of "i".

A. [tex](1+2i)(8i)= 8i+16i^{2}[/tex]

                        =[tex]8i-16[/tex]

B. [tex](1+2i)(2-5i)=2-i-10i^{2}[/tex]

                           =[tex]12-i[/tex]

C. [tex](1+2i)(1-2i)=1^{2}-4i^{2}[/tex]

                          =[tex]5[/tex]

D. [tex](1+2i)(4i)=4i+8i^{2}[/tex]

                        =[tex]4i-8[/tex]

Since, A,B,D contains the term "i" which means they are not real valued, therefore option C that is (1+2i)(1-2i) has a real number product.