Respuesta :

Answer:

The solution of the system will be:  [tex]x=0, y= -5[/tex]

Step-by-step explanation:

The given system of equation is......

[tex]14x-35=7y ...................................(1)\\ \\ -25-6x=5y..................................(2)[/tex]

First, solving for [tex]y[/tex] in the equation (1) ........

[tex]\frac{14x-35}{7}= \frac{7y}{7} \\ \\ y=2x-5[/tex]

Now, substituting this [tex]y=2x-5[/tex] into equation (2), we will get........

[tex]-25-6x=5(2x-5)\\ \\ -25-6x=10x-25\\ \\ -25+25=10x+6x\\ \\ 0=16x\\ \\ x=\frac{0}{16}=0[/tex]

Plugging [tex]x=0[/tex] into [tex]y=2x-5[/tex], we will get.......

[tex]y=2(0)-5= -5[/tex]

So, the solution of the system will be:  [tex]x=0, y= -5[/tex]