Answer:
[tex]8+25i[/tex]
Step-by-step explanation:
Given expression,
[tex](7+2i)(2+3i)[/tex]
[tex]=7(2+3i) + 2i(2+3i)[/tex] ( Distributive property )
[tex]=7(2) + 7(3i) + 2i(2) + 2i(3i)[/tex] ( Distributive property )
[tex]=14+21i+4i+6i^2[/tex]
[tex]=14+(21+4)i-6[/tex] ( i² = -1 )
[tex]=14+25i-6[/tex]
[tex]=8+25i[/tex]
Hence,
[tex](7+2i)(2+3i)=8+25i[/tex]