Respuesta :
Answer:
Angle A = 75°
Angle B = 75°
Angle C = 30°
Explanation:
If AC is congruent to CB, from figure given we have angle A = angle B.
Angle A = 3x + 18
Angle B = 7x - 58
Angle C = 2x - 8
We have,
3x + 18 = 7x - 58
4x = 76
x = 19
So,
Angle A = 3*19 + 18 = 75°
Angle B = 7*19 - 58 = 75°
Angle C = 2*19 - 8 = 30°

Triangle ABC is an isosceles triangle.
- The value of x is 19
- The measure of each angle is 75, 75 and 30 degrees
The given parameters are:
[tex]\mathbf{AC = CB}[/tex]
[tex]\mathbf{\angle A =3x + 18}[/tex]
[tex]\mathbf{\angle B =7x - 58}[/tex]
[tex]\mathbf{\angle C =2x - 8}[/tex]
Because [tex]\mathbf{AC = CB}[/tex], then:
[tex]\mathbf{\angle A = \angle B}[/tex]
So, we have:
[tex]\mathbf{3x + 18 = 7x - 58}[/tex]
Collect like terms
[tex]\mathbf{7x - 3x = 18 + 58}[/tex]
[tex]\mathbf{4x = 76}[/tex]
Divide through by 4
[tex]\mathbf{x = 19}[/tex]
Hence, the value of x is 19
Substitute 19 for x in [tex]\mathbf{\angle A =3x + 18}[/tex], [tex]\mathbf{\angle B =7x - 58}[/tex] and [tex]\mathbf{\angle C =2x - 8}[/tex]
So, we have:
[tex]\mathbf{\angle A= 3 \times 19 + 18 = 75}[/tex]
[tex]\mathbf{\angle B= 7 \times 19 - 78 = 75}[/tex]
[tex]\mathbf{\angle C= 2 \times 19 - 8 = 30}[/tex]
The measure of each angle is: 75, 75 and 30 degrees
Read more about angles in isosceles triangle at:
https://brainly.com/question/21736141