Respuesta :

frika

To evaluate [tex]\log _{\frac{1}{3}}27[/tex] note that:

  • [tex]\dfrac{1}{3}=3^{-1};[/tex]
  • [tex]27=3^3.[/tex]

Use following properties:

1) [tex]\log_ab^k=k\log_ab;[/tex]

2) [tex]\log_{a^k}b=\dfrac{1}{k}\log_ab.[/tex]

Then

[tex]\log _{\frac{1}{3}}27=\log_{3^{-1}}3^3=3\log_{3^{-1}}3=3\cdot \dfrac{1}{-1}\log_33=-3\log_33.[/tex]

Since [tex]\log_aa=1,[/tex] you have

 [tex]\log _{\frac{1}{3}}27=-3.[/tex]

Answer:

a on edge

Step-by-step explanation: