Respuesta :

ANSWER


[tex]x=-6y-\frac{21}{2} [/tex]



EXPLANATION


We have


[tex]\frac{2}{3}x +4y=-7[/tex].


Expressing  [tex]x[/tex]  in terms of  [tex]y[/tex] means we should rewrite the relation such that  [tex]x[/tex]  will remain on one side of the equation while  [tex]y[/tex]  and any other constant will be at the other side.


To make [tex]x[/tex] the subject, we add [tex]-4y[/tex] to both sides of the equation.

[tex]\frac{2}{3}x =-4y-7[/tex].


we now multiply the whole equation by the reciprocal of the coefficient of [tex]x[/tex], which is [tex]\frac{3}{2}[/tex].


This implies that;


[tex]\frac{3}{2} \times \frac{2}{3} x=\frac{3}{2} \times (-4y)-\frac{3}{2} \times 7[/tex]


This simplifies to;


[tex]x=-6y-\frac{21}{2} [/tex]