ANSWER
[tex]x=-6y-\frac{21}{2} [/tex]
EXPLANATION
We have
[tex]\frac{2}{3}x +4y=-7[/tex].
Expressing [tex]x[/tex] in terms of [tex]y[/tex] means we should rewrite the relation such that [tex]x[/tex] will remain on one side of the equation while [tex]y[/tex] and any other constant will be at the other side.
To make [tex]x[/tex] the subject, we add [tex]-4y[/tex] to both sides of the equation.
[tex]\frac{2}{3}x =-4y-7[/tex].
we now multiply the whole equation by the reciprocal of the coefficient of [tex]x[/tex], which is [tex]\frac{3}{2}[/tex].
This implies that;
[tex]\frac{3}{2} \times \frac{2}{3} x=\frac{3}{2} \times (-4y)-\frac{3}{2} \times 7[/tex]
This simplifies to;
[tex]x=-6y-\frac{21}{2} [/tex]