Find the perimeter and area of the polygon shown below. The polygon is a trapezoid made up of a rectangle and a right triangle. The rectangle is 18 feet long and 15 feet wide. The right triangle joins the rectangle at a side that is 15 feet wide, and this is the height of the triangle. The base of the triangle is 8 feet and the hypotenuse is 17 feet.

Respuesta :

Since, the polygon is a trapezoid made up of a rectangle and a right triangle. Therefore, according to the question, the figure of the polygon is attached.


Since, perimeter is the total length of the outer boundary of the figure. Therefore,

Perimeter of the polygon is[tex]=AB+BE+ED+DC+CA[/tex]

                                             [tex]=18+17+8+18+15[/tex]

                                             [tex]=76 \ ft[/tex]


Area of the polygon = Area of Rectangle + Area of Triangle

                                  [tex]=[(18) \times (15)] + [(\frac{1}{2}) \times (8) \times (15)][/tex]

                                  [tex]=270 + [(\frac{8}{2}) \times (15)][/tex]

                                  [tex]=270 + [4 \times (15)][/tex]

                                  [tex]=270 + 60[/tex]

                                  [tex]=330 \ {ft}^{2}[/tex]

Ver imagen ChiKesselman