Given 5x3+8x2−7x−6. 1) The binomial (x+2) is a factor of the polynomial expression. Describe how you know it is a factor. 2) The binomial (x+1) is NOT a factor of the polynomial expression. Explain how you know it is not a factor.

Respuesta :

ANSWER TO QUESTION 1


Given


[tex]f(x)=5x^3+8x^2-7x-6[/tex]


We can use the factor theorem to determine if



[tex]x+2[/tex] is a factor of the polynomial or not.



According to this theorem, if [tex]x+2[/tex] is a factor of [tex]f(x)[/tex], then [tex]f(-2)=0[/tex].



How did we get the [tex]-2[/tex]?


We set [tex]x+2=0[/tex] and then solve to obtain [tex]x=-2[/tex].



So now let us plug in [tex]x=-2[/tex] in to the function to see if it will simplify to zero.


[tex]f(-2)=5(-2)^3+8(-2)^2-7(-2)-6[/tex]



[tex]f(-2)=5(-8)+8(4)+7(2)-6[/tex]



[tex]f(-2)=-40+32+14-6[/tex]




[tex]f(-2)=6-6[/tex]



[tex]f(-2)=0[/tex]



Since the result simplifies to zero, we conclude that


[tex]x+2[/tex] is a factor of

[tex]f(x)=5x^3+8x^2-7x-6[/tex]




ANSWER TO QUESTION 2


We have the function,


[tex]f(x)=5x^3+8x^2-7x-6[/tex]


We can use the remainder theorem to show that



[tex]x+1[/tex] is NOT a factor of the polynomial.



According to this theorem, if [tex]x+1[/tex] is not a factor of [tex]f(x)[/tex], then [tex]f(-1)\ne 0[/tex].




So now let us plug in [tex]x=-1[/tex] in to the function to see if it will simplify to non-zero number.


[tex]f(-1)=5(-1)^3+8(-1)^2-7(-1)-6[/tex]



[tex]f(-1)=5(-1)+8(1)+7(1)-6[/tex]



[tex]f(-1)=-5+8+7-6[/tex]




[tex]f(-1)=4[/tex]



[tex]f(-1)\ne0[/tex]



Since the result simplifies to a non zero number, we conclude that


[tex]x+1[/tex] is NOT a factor of

[tex]f(x)=5x^3+8x^2-7x-6[/tex]