Respuesta :
slope (y2-y1)/(x2-x1)
m = (q--q)(p--p)
m = 2q/2p
m=q/p
point slope form
y-y1=m(x-x1)
y-q =q/p(x-p)
distribute
y-q=q/p *x -q
add q to each side
y = q/p *x
Answer:
[tex]y=\frac{q}{p}x[/tex]
Step-by-step explanation:
First we find the slope. The formula for slope is
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Using our two points, we have
m = (q--q)/(p--p) = (q+q)/(p+p) = 2q/2p = q/p
Point-slope form of an equation is
[tex]y-y_1=m(x-x_1)[/tex]
Using the first point as (x₁, y₁) and our value for m, we have
y - -q = (q/p)(x - - p)
y + q = (q/p)(x + p)
Using the distributive property, we have
y + q = (q/p)x + (q/p)p
y + q = (q/p)x + (q/p)(p/1)
y + q = (q/p)x + qp/p
y + q = (q/p)x + q
Subtract q from each side:
y + q - q = (q/p)x + q - q
y = (q/p)x