Respuesta :

The correct answer of this question: 18789.79 watt.

EXPLANATION:

As per the question, the surface area of the log is given as A = [tex]0.25\ m^2[/tex]

The temperature of the of the surface of the log t = 800 [tex]^0C[/tex]

We know that [tex]t^0C\ =(273+t)\ K[/tex]

                      ⇒ 800 degree celsius= 800+273 K

                                                           = 1073 K.

Here, K stands for kelvin scale.

We are asked to calculate the thermal power radiation .

The power is defined as the amount of energy released per unit time.

Hence, power is calculated as-

                                Power P = [tex]\sigma AT^4[/tex]

                                               = [tex]5.67\times 10^{-8} \times 0.25\times (1073)^4\ watt[/tex]

                                               = 18789.79 watt.      [ans]

Here, [tex]\sigma[/tex] is the Stefan-Boltzmann constant and T is the absolute temperature of the log.

The power emitted as thermal radiation by the burning log is 18.79 Kilowatt.

Given the data in the question;

  • Surface area; [tex]A = 0.25m^2[/tex]
  • Temperature; [tex]T = 800 ^oC = [ 800 + 273]K = 1073K[/tex]

Power; [tex]P = \ ?[/tex]

To determine how much power it emit as thermal radiation, we use Stefan's law of black body radiation:

[tex]Power = A*\alpha * T^4[/tex]

Where A is area, T is the temperature and α is the Stefan-Boltzmann constant ([tex]5.67 * 10^{-8} W/m^2 K^4[/tex])

We substitute our values into the equation

[tex]Power = 0.25m^2\ *\ (5.67 * 10^{-8} W/m^2 K^4) * (1073K)^4\\\\Power = 0.25m^2\ *\ (5.67 * 10^{-8} W/m^2 K^4) * (1.3255*10^{12} K^4)\\\\Power = 18789.8W\\\\Power = 18.79 kW[/tex]

Therefore, the power emitted as thermal radiation by the burning log is 18.79 Kilowatt.

Learn more: https://brainly.com/question/10731660