Answer:
[tex]b-c=\sqrt{a^2+4b^2-4ab}[/tex]
[tex]b-c= \sqrt{a^2+4c^2-4ac}[/tex]
Step-by-step explanation:
If a is equal to the sum of band c
then a = b + c
[tex]\therefore b-c=\sqrt{(b+c)^2-4bc}[/tex]
Substitute b+c=a and c=a-b
[tex]b-c=\sqrt{a^2-4b(a-b)}\Rightarrow \sqrt{a^2+4b^2-4ab}[/tex]
[tex]\therefore b-c=\sqrt{(b+c)^2-4bc}[/tex]
Substitute b+c=a and b=a-c
[tex]b-c=\sqrt{a^2-4c(a-c)}\Rightarrow \sqrt{a^2+4c^2-4ac}[/tex]