Respuesta :

gmany

[tex]5^{x-2}-7^{x-3}=7^{x-5}+11\cdot5^{x-4}\\\\5^{x-2}-7^{x-2-1}=7^{x-2-3}+11\cdot5^{x-2-2}\qquad\text{use}\ \dfrac{a^n}{a^m}=a^{n-m}\\\\5^{x-2}-\dfrac{7^{x-2}}{7^1}=\dfrac{7^{x-2}}{7^3}+11\cdot\dfrac{5^{x-2}}{5^2}\\\\5^{x-2}-\dfrac{1}{7}\cdot7^{x-2}=\dfrac{1}{343}\cdot7^{x-2}+\dfrac{11}{25}\cdot5^{x-2}\\\\-\dfrac{1}{7}\cdot7^{x-2}-\dfrac{1}{343}\cdot7^{x-2}=\dfrac{11}{25}\cdot5^{x-2}-5^{x-2}\\\\\left(-\dfrac{1}{7}-\dfrac{1}{343}\right)\cdot7^{x-2}=\left(\dfrac{11}{25}-1\right)\cdot5^{x-2}[/tex]

[tex]\left(-\dfrac{49}{343}-\dfrac{1}{343}\right)\cdot7^{x-2}=-\dfrac{14}{25}\cdot5^{x-2}\\\\-\dfrac{50}{343}\cdot7^{x-2}=-\dfrac{14}{25}\cdot5^{x-2}\qquad\text{multiply both sides by}\ \left(-\dfrac{25}{14}\right)\\\\\dfrac{50\cdot25}{343\cdot14}\cdot7^{x-2}=5^{x-2}\qquad\text{divide both sides by}\ 7^{x-2}\\\\\dfrac{25\cdot25}{343\cdot7}=\dfrac{5^{x-2}}{7^{x-2}}\qquad\text{use}\ \left(\dfrac{a}{b}\right)^n=\dfrac{a^n}{b^n}[/tex]

[tex]\dfrac{5^2\cdot5^2}{7^3\cdot7}=\left(\dfrac{5}{7}\right)^{x-2}\qquad\text{use}\ a^n\cdot a^m=a^{n+m}\\\\\dfrac{5^4}{7^4}=\left(\dfrac{5}{7}\right)^{x-2}\\\\\left(\dfrac{5}{7}\right)^4=\left(\dfrac{5}{7}\right)^{x-2}\iff x-2=4\qquad\text{add 2 to both sides}\\\\\boxed{x=6}[/tex]

Answer:

x = 6

Step-by-step explanation:

5^(x - 2) = 5^(x - 3) × 5¹

= 5[5^(x - 3)]

5^(x - 4) = 5^(x - 3) ÷ 5¹

= [5^(x - 3)]/5

7^(x - 5) = 7^(x - 3) ÷ 7²

= [7^(x - 3)]/49

5[5^(x - 3)] - 7^(x - 3) = [7^(x - 3)]/49 + 11[5^(x - 3)]/5

5[5^(x - 3)] - 11[5^(x - 3)]/5 = [7^(x - 3)]/49 + 7^(x - 3)

5^(x - 3)[5 - 11/5] = 7^(x - 3) [1/49 + 1]

5^(x - 3)[14/5] = 7^(x - 3) [50/49]

7^(x - 3) ÷ 5^(x - 3) = 14/5 × 49/50

(7/5)^(x - 3) = 7³/5³ = (7/5)³

x - 3 = 3

x = 6