Respuesta :
Answer: A, B, C, E
Explanation:
The sum of the interior angles of a polygon can be determined by the formula: (n - 2)180 ; where n represents the number of sides. Â Since a pentagon has 5 sides, then (5 - 2)180 = 540
 x - 8
3x - 11
 x + 8
 x
2x + 7
8x - 4 Â = Â 540
  +4     +4
8x     =  544
÷8       ÷8 Â
 x     =  68
**********************
x - 8   ⇒   68 - 8 = 60  (A)
3x - 11  ⇒   3(68) - 11 = 193 (E)
 x + 8  ⇒   (68) + 8 = 76 (C)
 x     ⇒   (68)  (B)
2x + 7  ⇒   2(68) + 7 = 143
The sumof the pentagon's interior angles is: 540°
According to the Question, we have: (x-8)+(3x-1)+(x+8)+x+(2x+7)=540
x-8+3x-11+x+8+x+2x+7=540
x+3x+x+x+2x=540+8+11-8-7
8x=544
x=544/8=68
(x-8)=68-8=60 (choose letter A)
(3x-11)=3*68-11=193 (choose letter E)
(x+8)=68+8=76 (choose letter C)
(x)=68 (choose letter B)
(2x+7)=2*68+7=143 (cannot select any letter)
In short, we choose letter A, B, C and E.