[tex]p=x^2+\dfrac{1}{x^2}\\\\p=\dfrac{x^4}{x^2}+\dfrac{1}{x^2}\\\\p=\dfrac{x^4+1}{x^2}\qquad(*)[/tex]
[tex]q=x+\dfrac{1}{x}\\\\q=\dfrac{x^2}{x}+\dfrac{1}{x}\\\\q=\dfrac{x^2+1}{x}\qquad\text{square both sides}\\\\q^2=\left(\dfrac{x^2+1}{x}\right)^2\\\\q^2=\dfrac{(x^2+1)^2}{x^2}\qquad\text{use}\ \ (a+b)^2=a^2+2ab+b^2\\\\q^2=\dfrac{(x^2)^2+2(x^2)(1)+1^2}{x^2}\\\\q^2=\dfrac{x^4+2x^2+1}{x^2}\\\\q^2=\dfrac{x^4+1}{x^2}+\dfrac{2x^2}{x^2}\\\\q^2=\dfrac{x^4+1}{x^2}+2\qquad\text{subtract 2 from both sides}\\\\q^2-2=\dfrac{x^4+1}{x^2}\\\\\text{From (*) we have}\\\\\boxed{p=q^2-2}[/tex]