Respuesta :

Answer:


[tex]\frac{64}{49}[/tex]


Step-by-step explanation:


As we can see the given expression as three complex parts and all are being multiplied.


Lets simplify each part separately and then multiply all of them in the end


Part1


[tex](\frac{8.4.2}{8.7})^{2} [/tex]  

Cancelling 8 in numerator with 8 in denominator


[tex](\frac{4.2}{7})^{2}[/tex]


[tex](\frac{8}{7})^{2}[/tex]


[tex]\frac{64}{49}[/tex]


Part2


[tex](\frac{8^{0} }{7^{-3} })^{3}[/tex]


simpliying


[tex](\frac{1}{7^{-3} })^{3}[/tex]


[tex]({7^{3} })^{3}[/tex]


[tex]7^{9}[/tex]


Part3


Third part is [tex] 7^{-9}[/tex], and it does not need to be further simplified


Now multiplying all the three parts


[tex]\frac{64}{49}.7^{9}.7^{-9}[/tex]


[tex]\frac{64}{49}.7^{9-9}[/tex]


[tex]\frac{64}{49}.7^{0}[/tex]


[tex]\frac{64}{49}.1[/tex]


[tex]\frac{64}{49}[/tex]


So our final answer is [tex]\frac{64}{49}[/tex]