Respuesta :

[tex]\bf ~\hspace{7em}\textit{negative exponents} \\\\ a^{-n} \implies \cfrac{1}{a^n} ~\hspace{4.5em} a^n\implies \cfrac{1}{a^{-n}} ~\hspace{4.5em} \cfrac{a^n}{a^m}\implies a^na^{-m}\implies a^{n-m} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \cfrac{4^4\cdot 4^3}{4^5}\implies \cfrac{4^{4+3}}{4^5}\implies \cfrac{4^7}{4^5}\implies \cfrac{4^7\cdot 4^{-5}}{1}\implies 4^{7-5}\implies 4^2\implies 16[/tex]

By the laws of exponents ...

[tex]\dfrac{4^4\cdot 4^3}{4^5}=4^{(4+3-5)}\\\\=4^2=16[/tex]

___

If what you want is the value, your calculator can deliver.

_____

Or, you can recognize that an exponent signfies repeated multiplication.

[tex]\dfrac{4^4\cdot 4^3}{4^5}=\dfrac{4\cdot 4\cdot 4\cdot 4\times 4\cdot 4\cdot 4}{4\cdot 4\cdot 4\cdot 4\cdot 4}\\\\=4\cdot 4=16[/tex]

Ver imagen sqdancefan