The length of a rectangle is x times the square root of 100. The width is one-half y more than three-halves x. Given that the area of the rectangle is 125 cm2, which equation could represent the rectangle in terms of x and y?

Respuesta :

Answer:

[tex]3x^2+xy-25=0[/tex]

Step-by-step explanation:

The length of the rectangle is:

[tex]L=x\cdot \sqrt{100}=x\cdot 10=10 x[/tex]

The width of the rectangle is:

[tex]W=\frac{1}{2}y+\frac{3}{2}x[/tex]

The area of the rectangle, which is the product between length and width, is equal to 125 cm^2:

[tex]A=L\cdot W=125[/tex]

Substituting the expressions for L and W found before, we get:

[tex](10x)(\frac{1}{2}y+\frac{3}{2}x)=125\\(10x)(y+3x)=250\\10xy+30x^2=250\\3x^2+xy-25=0[/tex]

Answer:

5xy + 15x2 = 125

Step-by-step explanation:

5xy + 15x2 = 125

L = (x

100

)

W = (

1

2

y −  

3

2

x)

(x

100

)(

1

2

y +  

3

2

x) = 125

(10x)(

1

2

y +  

3

2

x) = 125

5xy + 15x2 = 125