Respuesta :

We know that :

[tex]\clubsuit[/tex]  [tex]ln(A) - ln(B) = ln(\frac{A}{B})[/tex]

[tex]\clubsuit[/tex]  [tex]aln(x) = ln(x)^a[/tex]

[tex]\clubsuit[/tex]  [tex]ln(A) + ln(B) = ln(AB)[/tex]

Using above ideas we can solve the Problem :

⇒ [tex]\frac{3}{8}ln(x + 3) = ln(x + 3)^\frac{3}{8}[/tex]

⇒ [tex]ln(x - 3) - ln(x + 3)^\frac{3}{8} = ln[\frac{(x - 3)}{(x + 3)^\frac{3}{8}}][/tex]

⇒ [tex]4ln[\frac{(x - 3)}{(x + 3)^\frac{3}{8}}] = ln[\frac{(x - 3)}{(x + 3)^\frac{3}{8}}]^4 = ln[\frac{(x - 3)^4}{(x + 3)^\frac{3}{2}}][/tex]

⇒ [tex]\frac{1}{3}lnx + ln[\frac{(x - 3)^4}{(x + 3)^\frac{3}{2}}] = ln(x)^\frac{1}{3} + ln[\frac{(x - 3)^4}{(x + 3)^\frac{3}{2}}] = ln[\frac{\sqrt[3]{x}(x - 3)^4}{\sqrt{(x + 3)^{3}}}][/tex]

Option 3 is the Answer

Otras preguntas