Respuesta :

Iqta

We can find the surface area of the pyramid as

[tex]A = l*w+l*\sqrt{(\frac{w}{2} )^{2} +h^{2} }+w*\sqrt{(\frac{l}{2} )^{2} +h^{2}}[/tex]

here , because the base is squre so

[tex]l = w = 8[/tex]

[tex]h = 5[/tex]


By putting the values of l,w and h

we get

[tex]A = 8*8+8*\sqrt{(\frac{8}{2} )^{2} +5^{2} }+8*\sqrt{(\frac{8}{2} )^{2} +5^{2}}[/tex]

[tex]A = 64+8*\sqrt{16 +25 }+8*\sqrt{16 +25}[/tex]

[tex]A = 64+(8*\sqrt{41) +(8*\sqrt{41})[/tex]

[tex]A = 64+51.2+51.2[/tex]

[tex]A = 166.4[/tex]



The answer is forty five