Respuesta :

(2x^2+13x+15)/2x+3=x+5

Use long or synthetic division to solve this problem.

Answer : The length of the base of the parallelogram is, [tex]x+5[/tex]

Step-by-step explanation :

As we know that:

Area of parallelogram = Height × Base

Given:

Height of parallelogram = [tex]2x+3[/tex]

Area of parallelogram = [tex]2x^2+13x+15[/tex]

Now put all the given values in the above formula, we get:

Area of parallelogram = Height × Base

[tex]2x^2+13x+15[/tex] = [tex]2x+3[/tex] × Base

Base = [tex]\frac{2x^2+13x+15}{2x+3}[/tex]

Now factorize this expression [tex]2x^2+13x+15[/tex], we get:

Base = [tex]\frac{2x^2+(10x+3x)+15}{2x+3}[/tex]

Base = [tex]\frac{2x(x+5)+3(x+5)}{2x+3}[/tex]

Base = [tex]\frac{(2x+3)(x+5)}{2x+3}[/tex]

Base = [tex]x+5[/tex]

Therefore, the length of the base of the parallelogram is, [tex]x+5[/tex]