Respuesta :

gmany

[tex]f(x)=-\left(\dfrac{1}{3}\right)^{-x}=-\Bigg[\left(\dfrac{1}{3}\right)^{-1}\Bigg]^x=-(3)^x\\\\f(x)<0\ \text{for any real values of x}\ (III\ and\ IV\ quadrant)\\\\a^x\ \text{is increased for}\ a>1.\ \text{Therefore}\ 3^x\ \text{is increased}.\\\\\text{We have}\ -3^x,\ \text{therefore the graph is decreased}.[/tex]

Ver imagen gmany

Only bottom left graph satisfy the conditions of the end behaviour and y-intercept. The bottom left option is correct.

Given:

The given function is:

[tex]f(x)=-\left(\dfrac{1}{3}\right)^{-x}[/tex]

To find:

The graph of the given function.

Explanation:

The given function can be rewritten as:

[tex]f(x)=-\dfrac{1}{3^{-x}}[/tex]

[tex]f(x)=-3^{x}[/tex]

For [tex]x=0[/tex], we get

[tex]f(0)=-3^{0}[/tex]

[tex]f(0)=-1[/tex]

So, the y-intercept of the graph is [tex]-1[/tex].

End behaviour of the graph:

[tex]f(x)\to 0[/tex] as [tex]x\to -\infty[/tex]

[tex]f(x)\to -\infty[/tex] as [tex]x\to \infty[/tex]

Only bottom left graph satisfy the above conditions.

Therefore, the bottom left option is correct.

Learn more:

https://brainly.com/question/25314114

Otras preguntas