Respuesta :

ANSWER

[tex]Average \: Weight = 7 \frac{1}{8} \: bushels[/tex]


EXPLANATION

To find the average weight per bushel, we add all the three weight and divide by 3.


[tex]Average \: Weight = \frac{8 \frac{1}{4} + 6 \frac{1}{2} + 6 \frac{5}{8} }{3} [/tex]


We convert all the mixed numbers to improper fraction to obtain,


[tex]Average \: Weight = \frac{ \frac{33}{4} + \frac{13}{2} + \frac{53}{8} }{3} [/tex]


The least common denominator for the fractions in the numerator is 8.


This implies that,

[tex]Average \: Weight = \frac{ \frac{66 + 52 + 53}{8} }{3} [/tex]

This simplifies to


[tex]Average \: Weight = \frac{ \frac{171}{8} }{3} [/tex]


This gives us,

[tex]Average \: Weight = \frac{171}{24} [/tex]



[tex]Average \: Weight = \frac{57}{8} [/tex]


[tex]Average \: Weight = 7 \frac{1}{8} [/tex]