Respuesta :

The correct answer is A.

  • The inverse function of your problem is [tex]g^{-1}[/tex] (x) = -[tex]\frac{3}{4}[/tex] x + [tex]\frac{3}{2}[/tex] .

Hope this helps,

Davinia.

The inverse of the function g(x)=-4/3x+2 is

[tex]g^{-1}(x) = -\frac{3}{4}x+\frac{3}{2}[/tex]

The given function is:

[tex]g(x) = -\frac{4}{3}x + 2[/tex]

To find the inverse of the function g(x), follow the steps below

Make x the subject of the formula

[tex]g(x) = -\frac{4}{3}x+2\\\\ -\frac{4}{3}x = g(x) - 2\\\\-4x=3g(x)-6\\\\x = -\frac{3}{4}g(x)+\frac{6}{4} \\\\x = -\frac{3}{4}g(x)+\frac{3}{2}[/tex]

Replace x by [tex]g^{-1}(x)[/tex] and replace g(x) by x

The inverse function therefore becomes:

[tex]g^{-1}(x) = -\frac{3}{4}x+\frac{3}{2}[/tex]

The inverse of the function g(x)=-4/3x+2 is [tex]g^{-1}(x) = -\frac{3}{4}x+\frac{3}{2}[/tex]

Learn more here: https://brainly.com/question/12220962