Respuesta :
Answers:
1.02 g
Explanation:
We know we will need a balanced equation with masses and molar masses, so let’s gather all the information in one place.
M_r: 26.98 101.95
4Al + 3O₂ ⟶ 2Al₂O₃
Mass/g: 54
1. Calculate the moles of Al
Moles Al = 54 × 1/26.98
Moles Al = 2.00 mol Al
=====
2. Calculate the moles of Al₂O₃
The molar ratio is 2 mol Al₂O₃:4 mol Al
Moles of Al₂O₃ = 2.00 × 2/4
Moles of Al₂O₃ = 1.00 mol Al₂O₃
======
3. Calculate the mass of Al₂O₃
Mass of Al₂O₃ = 1.00 × 101.95
Mass of Al₂O₃ = 1.02 g
Answer : The mass of [tex]Al_2O_3[/tex] produced will be, 101.96 grams
Explanation : Given,
Mass of Al = 54 g
Molar mass of Al = 27 g/mole
Molar mass of [tex]Al_2O_3[/tex] = 101.96 g/mole
First we have to calculate the moles of Al.
[tex]\text{Moles of }Al=\frac{\text{Mass of }Al}{\text{Molar mass of }Al}=\frac{54g}{27g/mole}=2mole[/tex]
Now we have to calculate the moles of [tex]Al_2O_3[/tex]
The given balanced chemical reaction is,
[tex]4Al+3O_2\rightarrow 2Al_2O_3[/tex]
From the balanced reaction we conclude that,
As, 4 moles of Al react to give 2 moles of [tex]Al_2O_3[/tex]
So, 2 moles of Al react to give [tex]\frac{2}{4}\times 2=1mole[/tex] of [tex]Al_2O_3[/tex]
Now we have to calculate the mass of [tex]Al_2O_3[/tex]
[tex]\text{Mass of }Al_2O_3=\text{Moles of }Al_2O_3\times \text{Molar mass of }Al_2O_3=1mole\times 101.96g/mole=101.96g[/tex]
Therefore, the mass of [tex]Al_2O_3[/tex] produced will be, 101.96 grams