Answer:
[tex]18[/tex] skis and [tex]10[/tex] snowboards were rented.
Step-by-step explanation:
Let the number of skis rented be [tex]x[/tex] and the number of snowboards rented be [tex]y[/tex].
If a total of [tex]28[/tex] people rented on a certain day, then the total number of skis and snowboards rented that particular day is also [tex]28[/tex].
This gives us the equation
[tex]x+y=28...eqn(1)[/tex].
If skis cost $ [tex]16[/tex], then [tex]x[/tex] number of skis cost $ [tex]16x[/tex].
If snowboards cost $ [tex]19[/tex], then [tex]y[/tex] number of snowboards cost $ [tex]19y[/tex].
The total cost will give us another equation,
[tex]16x+19y=478...eqn(2)[/tex]
From equation (1),
[tex]y=28-x...eqn(3)[/tex].
We put equation (3) into equation (2) to get,
[tex]16x+19(28-x)=478[/tex]
We expand the brackets to obtain,
[tex]16x+532-19x=478[/tex]
We group like terms to get,
[tex]16x-19x=478-532[/tex]
This implies that,
[tex]-3x=-54[/tex]
We divide both sides by [tex]-3[/tex] to get,
[tex]x=18[/tex]
We put [tex]x=18[/tex] into equation (3) to get,
[tex]y=28-18[/tex]
[tex]y=10[/tex]
Therefore [tex]18[/tex] skis and [tex]10[/tex] snowboards were rented.