Respuesta :

Answer:

17.2°

Step-by-step explanation:

using the tangent ration in the right triangle

tan y° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{19.1}{14.1}[/tex], hence

y = [tex]tan^{-1}[/tex]([tex]\frac{19.1}{14.1}[/tex]) ≈ 53.6°

tan x° = [tex]\frac{14.1}{19.1}[/tex], hence

x = [tex]tan^{-1}[/tex]([tex]\frac{14.1}{19.1}[/tex]) ≈ 36.4°

y - x = 53.6° - 36.4° = 17.2°


Answer:

D) y -x = Approximate 17.1 degree.

Step-by-step explanation:

Given : Triangle .

To find :  Approximate value of y - x.

Solution : We have given a right angle triangle with

Opposite side = 19.1 in.

Adjacent side = 14 .1 in.

Tan( y ) = [tex]\frac{Opposite}{adjacent}[/tex].

Plug the values

Tan( y ) = [tex]\frac{19.1}{14.1}[/tex].

tan(y) = 1.354.

Taking tan inverse both sides.

y = [tex]tan^{-1}(1.354)[/tex].

y = 53.55 degree.

Now, by the sum of angle of triangles is 180 degree.

Angle c + angle y + angle  x = 180.

Plug the variable

90 + 53.55 + x = 180.

83.55 + x = 180

On subtracting both sides by 83.55

x = 36.45 degree

Then ,

y - x = 53 .55 - 36 . 45

y - x = 17.2

Approximate 17.1 degree

Therefore, D) y -x = Approximate 17.1 degree.