what is the approximate value of y - x

Answer:
17.2°
Step-by-step explanation:
using the tangent ration in the right triangle
tan y° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{19.1}{14.1}[/tex], hence
y = [tex]tan^{-1}[/tex]([tex]\frac{19.1}{14.1}[/tex]) ≈ 53.6°
tan x° = [tex]\frac{14.1}{19.1}[/tex], hence
x = [tex]tan^{-1}[/tex]([tex]\frac{14.1}{19.1}[/tex]) ≈ 36.4°
y - x = 53.6° - 36.4° = 17.2°
Answer:
D) y -x = Approximate 17.1 degree.
Step-by-step explanation:
Given : Triangle .
To find : Approximate value of y - x.
Solution : We have given a right angle triangle with
Opposite side = 19.1 in.
Adjacent side = 14 .1 in.
Tan( y ) = [tex]\frac{Opposite}{adjacent}[/tex].
Plug the values
Tan( y ) = [tex]\frac{19.1}{14.1}[/tex].
tan(y) = 1.354.
Taking tan inverse both sides.
y = [tex]tan^{-1}(1.354)[/tex].
y = 53.55 degree.
Now, by the sum of angle of triangles is 180 degree.
Angle c + angle y + angle x = 180.
Plug the variable
90 + 53.55 + x = 180.
83.55 + x = 180
On subtracting both sides by 83.55
x = 36.45 degree
Then ,
y - x = 53 .55 - 36 . 45
y - x = 17.2
Approximate 17.1 degree
Therefore, D) y -x = Approximate 17.1 degree.