Respuesta :

gmany

The slope-point form of line:

[tex]y-y_1=m(x-x_1)\\\\m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have the points (-9, 7) and (6, 2). Substitute:

[tex]m=\dfrac{2-7}{6-(-9)}=\dfrac{-5}{6+9}=-\dfrac{5}{15}=-\dfrac{1}{3}\\\\y-7=-\dfrac{1}{3}(x-(-9))\\\\\boxed{y-7=-\dfrac{1}{3}(x+9)}[/tex]

The slope-intercept form of line:

[tex]y=mx+b[/tex].

We have the slope m:

[tex]y=-\dfrac{1}{3}x+b[/tex]

Pu the coordinates of the point (6, 2) to the equation:

[tex]2=-\dfrac{1}{3}(6)+b[/tex]

[tex]2=-2+b[/tex]             add 2 to both sides

[tex]4=b\to b=4[/tex]

[tex]\boxed{y=-\dfrac{1}{3}x+4}[/tex]