Respuesta :

Answer:

5) 5

6) [tex]2(x+3)(x+4)[/tex]

Zeros: [tex]x_1=-3\\x_2=-4[/tex]

7) [tex]x^{2}+11x-180=0\\(x+20)(x-9)=0[/tex]


Step-by-step explanation:

5) You can factor the quadratic equation [tex]-t^{2}-t+30[/tex] to solve it:

[tex]-(x-5)(x+6)=0[/tex]

Then you obtain:

[tex]x_1=5\\x_2=-6[/tex]

Choose the positive result.

6) You can factor out 2:

[tex]2(x^{2}+7x+12)=0[/tex]

Factor the expression. Find the numbers that sum 7 and the their product is 12. These would be 3 and 4:

[tex]2(x+3)(x+4)[/tex]

The zeros are:

[tex]x_1=-3\\x_2=-4[/tex]

7) If you factor the quadratic equation [tex]x^{2}+11x-180=0[/tex] you obtain:

[tex](x+20)(x-9)=0[/tex]

And the zeros are:

[tex]x_1=-20\\x_2=9[/tex]

Therefore, the answers are the options 3 and 4:

[tex]x^{2}+11x-180=0[/tex] and  [tex](x+20)(x-9)=0[/tex]