emka90
contestada

Simplify the example using exponent rules. Your answer should not include any negative exponents.

5x to the -4 power
Over
1x to the -9 power

Respuesta :

Answer:

[tex]\frac{(5x)^{-4}}{(1x)^{-9}}[/tex] is simplified to [tex]\frac{x^5}{625}[/tex]

Step-by-step explanation:

Consider the given expression "5x to the -4 power  Over  1x to the -9 power".

We can write this mathematically as,

5x to the -4 power  as [tex](5x)^{-4}[/tex]

and 1x to the -9 power as [tex](1x)^{-9}[/tex]

Thus, 5x to the -4 power  Over  1x to the -9 power can be written as, [tex]\frac{(5x)^{-4}}{(1x)^{-9}}[/tex]

We have to simplify the above expression,

Consider, [tex]\frac{(5x)^{-4}}{(1x)^{-9}}[/tex]

This can be re-written as,

[tex]\Rightarrow \frac{(5x)^{-4}}{(1x)^{-9}}=\frac{(5x)^{-4}}{x^{-9}}[/tex]

Solving further,

[tex]\Rightarrow \frac{(5x)^{-4}}{x^{-9}}=\frac{5^{-4}\cdot x^{-4}}{x^{-9}}[/tex],

using property of exponent,[tex]\frac{a^x}{a^y}=a^{x-y}[/tex]

[tex]\Rightarrow \frac{5^{-4}\cdot x^{-4}}{x^{-9}}=5^{-4}x^{-4-(-9)}[/tex],

[tex]\Rightarrow 5^{-4}x^{-4-(-9)}=5^{-4}x^{5}[/tex],

using property of exponent, [tex]a^{-x}=\frac{1}{a^x}[/tex]

[tex]\Rightarrow 5^{-4}x^{5}=\frac{x^5}{5^4}[/tex],

[tex]\Rightarrow \frac{x^5}{5^4}=\frac{x^5}{625}[/tex]

Thus, [tex]\frac{(5x)^{-4}}{(1x)^{-9}}[/tex] is simplified to [tex]\frac{x^5}{625}[/tex]