Simplify the following polynomial expression. (5x^4 - 9x^3 + 7x - 1) + (-8x^4 + 4x^2 - 3x + 2) - ( -4x^3 + 5x - 1)( 2x - 7)

Respuesta :

Answer: [tex]5x^{4}-37x^{3}-6x^{2} +41x-6[/tex]


Step-by-step explanation:

1. You must apply the Distributive property.  You need to remember the product property of exponents: If you multiply powers with the same base, you must add the exponents. Them you have:

[tex]=5x^{4}-9x^{3}+7x-1-8x^{4}+4x^{2}-3x+2-(8x^{4}+28x^{3}+10x^{2}-35x-2x+7)\\=5x^{4}-9x^{3}+7x-1-8x^{4}+4x^{2}-3x+2-8x^{4}-28x^{3}-10x^{2}+35x+2x-7[/tex]

2. Now, you must add the like terms. Then, you obtain the following result:

[tex]=5x^{4}-37x^{3}-6x^{2} +41x-6[/tex]



Answer:

5x^4-37x^3-6x^2+41x-6

Step-by-step explanation: