Respuesta :
Answer:
[tex]\frac{144a^{4}+144a^{3} - 36 - 12a} {2a+1}\\[/tex]
Step-by-step explanation:
[tex]\frac{(12a^2-3)}{2*(2a+1)^{-2}}*\frac{6}{(2a+1)^{-1} }\\ = \frac{(12a^2-3)}{2 * \frac{1}{(2a+1)^{2} }} * \frac{6}{\frac{1}{2a+1} }\\ =\frac{(12a^2-3)(2a+1)^{2}}{2} * \frac{6}{2a+1}\\=\frac{(12a^2-3)(2a+1)^{2}}{2} * \frac{6}{2a+1}[/tex]
[tex]= \frac{(12a^2-3)(4a^{2} + 1 + 2 (2a)(1))}{2} * \frac{6}{2a+1}\\= \frac{(12a^2-3)(4a^{2} + 1 + 4a)}{2} * \frac{6}{2a+1}\\= \frac{(12a^2-3)(4a^{2} + 1 + 4a)}{1} * \frac{3}{2a+1}\\= \frac{3(12a^2-3)(4a^{2} + 1 + 4a)} {2a+1}\\\\= \frac{3(12a^2(4a^{2} + 1 + 4a) - 3 (4a^{2}+1+4a)} {2a+1}\\= \frac{3(48a^{4}+12a^{2}+48a^{3} - 12a^{2} -12 - 4a)} {2a+1}\\= \frac{144a^{4}+36a^{2}+144a^{3} - 36a^{2} - 36 - 12a)} {2a+1}[/tex]
[tex]= \frac{144a^{4}+36a^{2}+144a^{3} - 36a^{2} - 36 - 12a} {2a+1}\\= \frac{144a^{4}+144a^{3} - 36 - 12a} {2a+1}\\[/tex]